Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268119

ABSTRACT

There have been clinical descriptions of diverse neurological effects in COVID-19 disease, involving up to 36% of patients. It appears likely that most of these are not caused by viral brain invasion but by systemic accompaniments of critical illness such as coagulopathy, deleteriously upregulated immune response, autoimmune mechanisms, hypoxia or multiorgan failure. Anosmia or hyposmia is present in a majority of COVID-19 patients, and there is early and severe involvement of the nasopharyngeal mucosa and olfactory epithelium. Preliminary studies by our group have found massive gene expression changes in olfactory bulb, but the magnitude of these changes are not different between subjects with detectable versus non-detectable olfactory bulb SARS-CoV-2 RNA. As spontaneous discharge of olfactory epithelial afferents dictates intra-olfactory bulb neurophysiological activity and connectivity, we hypothesized that olfactory bulb deafferentation during COVID-19 is responsible for a large fraction of our observed olfactory bulb transcriptional changes. As the olfactory marker protein (OMP-1) is a specific marker of olfactory epithelial afferents to the olfactory bulb and is severely depleted in animal model lesions of olfactory epithelium, we quantified OMP-1-immunoreactivity in the olfactory bulb of subjects dying with or without COVID-19. Additionally, we quantified olfactory bulb tyrosine hydroxylase (TH), which is often also reduced after olfactory epithelium lesions, and SNAP-25, a pan-synaptic marker. COVID-19 cases (n = 18) were generally elderly and were not significantly different in age or gender distribution from the non-COVID-19 cases (n = 28). Both COVID-19 and non-COVID-19 cases had a wide range of neuropathological diagnoses. The area occupied by OMP-1 immunoreactivity in COVID-19 cases was significantly less, about 60% of that in control cases but amongst subjects with COVID-19, there was no significant difference between OBT-SARS-CoV-2-PCR-positive and negative cases. There were no significant group differences for TH or SNAP-25, supporting a selective effect for OMP-1. We suggest that olfactory dysfunction, and some of the COVID-19-associated transcriptional changes that we have reported for the olfactory bulb and amygdala, may be due to olfactory bulb deafferentation and subsequent transsynaptic effects. Additionally, animal models of olfactory bulb deafferentation or bulbectomy indicate a possibility for widespread changes in interconnected brain regions, providing a possible substrate for diverse post-acute COVID-19 neurological sequelae.


Subject(s)
Blood Coagulation Disorders , Olfaction Disorders , Hypoxia , COVID-19 , Seizures
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.16.21266656

ABSTRACT

The coronavirus SARS-CoV-2 causes COVID-19, a predominantly respiratory disease that has been reported to be associated with numerous neurological signs, symptoms and syndromes. More than 20 published studies have used RT-PCR methods to determine viral SARS-CoV-2 genomic presence in postmortem brain tissue and the overall impression is that viral brain invasion is relatively uncommon and occurs in low copy numbers, supporting indirect mechanisms as the cause of most neurological phenomena. Hypoxic-ischemic brain injury and stroke are one such possible indirect mechanism, as acute ischemia or stroke concurrence with COVID-19 has been reported as being 0.5% to 20%. Immunohistochemical stains for beta-amyloid precursor protein (APP) have been suggested to be a signature change of hypoxic leukoencephalopathy or COVID-19 brain disease, although prior reports have not had a non-COVID-19 control group. We therefore compared the prevalence and intensity of white matter APP staining in the brains of subjects dying with and without COVID-19. Clinical and neuropathological results, including semi-quantitative assessment of the density of white matter APP staining, were compared between 20 COVID-19 cases and 20 pre-COVID-19 autopsy cases, including 10 cases with autopsy-proven non-COVID-19 pneumonia and 10 cases without pneumonia. Positive APP white matter staining in at least one of the two brain regions (precentral gyrus and cingulate gyrus) studied was not significantly more common in COVID-19 vs controls (14/20 vs 12/20). Comparing density scores from both brain regions combined, the mean scores for COVID-19 cases were higher than those for controls of both types together but not significantly different when restricting to controls with pneumonia. Among control cases, cases with pneumonia had significantly higher scores. The presence or absence of a major neuropathologically-defined neurodegenerative disorder did not significantly affect the APP scores. The major finding is that while APP white matter staining cannot be regarded as a specific marker of COVID-19, as it does not occur with significantly greater probability in in COVID-19 brains as compared to non-COVID-19 brains, it is possible that white matter APP staining, representing acute or subacute axonal damage, may be a common occurrence in the perimortem period, and that it may be more intense in subjects dying with pneumonia, regardless of cause.


Subject(s)
Respiratory Tract Diseases , Pneumonia , Ischemia , Leukoencephalopathies , Brain Injuries , COVID-19 , Stroke , Brain Diseases , Basal Ganglia Diseases , Neurodegenerative Diseases
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.28.21256277

ABSTRACT

In critically ill COVID-19 patients, the risk of long-term neurological consequences is just beginning to be appreciated. While recent studies have identified that there is an increase in structural injury to the nervous system in critically ill COVID-19 patients, there is little known about the relationship of COVID-19 neurological damage to the systemic inflammatory diseases also observed in COVID-19 patients. The purpose of this pilot observational study was to examine the relationships between serum neurofilament light protein (NfL, a measure of neuronal injury) and co-morbid cardiovascular disease (CVD) and neurological complications in COVID-19 positive patients admitted to the intensive care unit (ICU). In this observational study of one-hundred patients who were admitted to the ICU in Tucson, Arizona between April and August 2020, 89 were positive for COVID-19 (COVID-pos) and 11 were COVID-negative (COVID-neg). A healthy control group (n=8) was examined for comparison. The primary outcomes and measures were subject demographics, serum NfL, presence and extent of CVD, diabetes, sequential organ failure assessment score (SOFA), presence of neurological complications, and blood chemistry panel data. COVID-pos patients in the ICU had significantly higher mean levels of Nfl (229.6+163 pg/ml) compared to COVID-neg ICU patients (19.3+5.6 pg/ml), Welchs t-test, p =.01 and healthy controls (12.3+3.1 pg/ml), Welchs t-test p =.005. Levels of Nfl in COVID-pos ICU patients were significantly higher in patients with concomitant CVD and diabetes (n=35, log Nfl 1.6+.09), and correlated with higher SOFA scores (r=.5, p =.001). These findings suggest that in severe COVID-19 disease, the central neuronal and axonal damage in these patients may be driven, in part, by the level of systemic cardiovascular disease and peripheral inflammation. Understanding the contributions of systemic inflammatory disease to central neurological degeneration in these COVID-19 survivors will be important to the design of interventional therapies to prevent long-term neurological and cognitive dysfunction.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Inflammation , Central Nervous System Diseases , Nervous System Diseases , Nerve Degeneration , COVID-19 , Cognition Disorders , Basal Ganglia Diseases
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21254139

ABSTRACT

Stroke is one of the most serious complications of Covid-19 disease but it is still unclear whether stroke is more common with Covid-19 pneumonia as compared to non-Covid-19 pneumonia. We investigated the concurrence rate of autopsy-confirmed acute brain ischemia, acute brain infarction and acute brain hemorrhage with autopsy-proven acute non-Covid pneumonia in consecutive autopsies in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), a longitudinal clinicopathological study of normal aging and neurodegenerative diseases. Of 691 subjects with a mean age of 83.4 years, acute pneumonia was histopathologically diagnosed in 343 (49.6%); the concurrence rates for histopathologically-confirmed acute ischemia, acute infarction or subacute infarction was 14% and did not differ between pneumonia and non-pneumonia groups while the rates of acute brain hemorrhage were 1.4% and 2.0% of those with or without acute pneumonia, respectively. In comparison, in reviews of Covid-19 publications, reported clinically-determined rates of acute brain infarction range from 0.5% to 20% while rates of acute brain hemorrhage range from 0.13% to 2%. In reviews of Covid-19 autopsy studies, concurrence rates for both acute brain infarction and acute brain hemorrhage average about 10%. Covid-19 pneumonia and non-Covid-19 pneumonia may have similar risks tor concurrent acute brain infarction and acute brain hemorrhage when pneumonia is severe enough to cause death. Additionally, acute brain ischemia, infarction or hemorrhage may not be more common in subjects dying of acute pneumonia than in subjects dying without acute pneumonia.


Subject(s)
Hemorrhage , Pneumonia , Brain Infarction , Ischemia , Cerebral Hemorrhage , Infarction , Brain Ischemia , Death , COVID-19 , Stroke , Intracranial Hemorrhages , Neurodegenerative Diseases
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.15.21251511

ABSTRACT

The coronavirus SARS-CoV-2 (SCV2) causes acute respiratory distress, termed COVID-19 disease, with substantial morbidity and mortality. As SCV2 is related to previously-studied coronaviruses that have been shown to have the capability for brain invasion, it seems likely that SCV2 may be able to do so as well. To date, although there have been many clinical and autopsy-based reports that describe a broad range of SCV2-associated neurological conditions, it is unclear what fraction of these have been due to direct CNS invasion versus indirect effects caused by systemic reactions to critical illness. Still critically lacking is a comprehensive tissue-based survey of the CNS presence and specific neuropathology of SCV2 in humans. We conducted an extensive neuroanatomical survey of RT-PCR-detected SCV2 in 16 brain regions from 20 subjects who died of COVID-19 disease. Targeted areas were those with cranial nerve nuclei, including the olfactory bulb, medullary dorsal motor nucleus of the vagus nerve and the pontine trigeminal nerve nuclei, as well as areas possibly exposed to hematogenous entry, including the choroid plexus, leptomeninges, median eminence of the hypothalamus and area postrema of the medulla. Subjects ranged in age from 38 to 97 (mean 77) with 9 females and 11 males. Most subjects had typical age-related neuropathological findings. Two subjects had severe neuropathology, one with a large acute cerebral infarction and one with hemorrhagic encephalitis, that was unequivocally related to their COVID-19 disease while most of the 18 other subjects had non-specific histopathology including focal B-amyloid precursor protein white matter immunoreactivity and sparse perivascular mononuclear cell cuffing. Four subjects (20%) had SCV2 RNA in one or more brain regions including the olfactory bulb, amygdala, entorhinal area, temporal and frontal neocortex, dorsal medulla and leptomeninges. The subject with encephalitis was SCV2-positive in a histopathologically-affected area, the entorhinal cortex, while the subject with the large acute cerebral infarct was SCV2-negative in all brain regions. Like other human coronaviruses, SCV2 can inflict acute neuropathology in susceptible patients. Much remains to be understood, including what viral and host factors influence SCV2 brain invasion and whether it is cleared from the brain subsequent to the acute illness.


Subject(s)
Coronavirus Infections , Hemorrhage , Respiratory Distress Syndrome , Cerebral Infarction , Encephalitis , Hypothalamic Neoplasms , COVID-19 , Papilloma, Choroid Plexus
SELECTION OF CITATIONS
SEARCH DETAIL